// // ProjectionTangential routines. // // Copyright 2005 by Johannes Hofmann // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA. // #include #include #include #include extern "C" { #include } #include "ProjectionTangential.H" static int opt_step(double *tan_nick_view, double *tan_dir_view, double *n_scale, double tan_dir_m1, double tan_nick_m1, double tan_dir_m2, double tan_nick_m2, double d_m1_2, double d_m2_2, double d_m1_m2_2); static double comp_tilt(double tan_nick_view, double tan_dir_view, double n_scale, double tan_nick_m, double tan_dir_m, double x, double y, double pi_d); int ProjectionTangential::comp_params(Hill *m1, Hill *m2, ViewParams *parms) { Hill *tmp; double a_center_tmp, scale_tmp, a_nick_tmp; if (m1->x > m2->x) { tmp = m1; m1 = m2; m2 = tmp; } a_center_tmp = comp_center_angle(m1->alph, m2->alph, m1->x, m2->x); scale_tmp = comp_scale(m1->alph, m2->alph, m1->x, m2->x); a_nick_tmp = atan ((m1->y + tan(m1->a_nick) * parms->scale) / (parms->scale - m1->y * tan(m1->a_nick))); if (isnan(a_center_tmp) || isnan(scale_tmp) || isnan(a_nick_tmp)) { return 1; } else { parms->a_center = a_center_tmp; parms->scale = scale_tmp; parms->a_nick = a_nick_tmp; optimize(m1, m2, parms); return 0; } } int ProjectionTangential::optimize(Hill *m1, Hill *m2, ViewParams *parms) { int i; double tan_nick_view, tan_dir_view, n_scale; double tan_nick_m1, tan_dir_m1; double tan_nick_m2, tan_dir_m2; double d_m1_2, d_m2_2, d_m1_m2_2; d_m1_2 = pow(m1->x, 2.0) + pow(m1->y, 2.0); d_m2_2 = pow(m2->x, 2.0) + pow(m2->y, 2.0); d_m1_m2_2 = pow(m1->x - m2->x, 2.0) + pow(m1->y - m2->y, 2.0); tan_nick_view = tan(parms->a_nick); tan_dir_view = tan(parms->a_center); n_scale = parms->scale; tan_dir_m1 = tan(m1->alph); tan_nick_m1 = tan(m1->a_nick); tan_dir_m2 = tan(m2->alph); tan_nick_m2 = tan(m2->a_nick); for (i=0; i<5; i++) { opt_step(&tan_nick_view, &tan_dir_view, &n_scale, tan_dir_m1, tan_nick_m1, tan_dir_m2, tan_nick_m2, d_m1_2, d_m2_2, d_m1_m2_2); } if (isnan(tan_dir_view) || isnan(tan_nick_view) || isnan(n_scale)) { fprintf(stderr, "No solution found.\n"); return 1; } parms->a_center = atan(tan_dir_view); parms->a_nick = atan(tan_nick_view); if (parms->a_center > 2.0 * pi_d) { parms->a_center = parms->a_center - 2.0 * pi_d; } else if (parms->a_center < 0.0) { parms->a_center = parms->a_center + 2.0 * pi_d; } // atan(tan_dir_view) is not the only possible solution. // Choose the one which is close to m1->alph. if (fabs(parms->a_center - m1->alph) > pi_d/2.0) { parms->a_center = parms->a_center + pi_d; } parms->scale = n_scale; // use the point with greater distance from center for tilt computation if (d_m1_2 > d_m2_2) { parms->a_tilt = comp_tilt(tan_nick_view, tan_dir_view, n_scale, tan_nick_m1, tan_dir_m1, (double) m1->x, (double) m1->y, pi_d); } else { parms->a_tilt = comp_tilt(tan_nick_view, tan_dir_view, n_scale, tan_nick_m2, tan_dir_m2, (double) m2->x, (double) m2->y, pi_d); } return 0; } void ProjectionTangential::set_coordinates(Hill *m, const ViewParams *parms) { double x_tmp, y_tmp; x_tmp = tan(m->a_view) * parms->scale; y_tmp = - (tan(m->a_nick - parms->a_nick) * parms->scale); // rotate by a_tilt; m->x = (int) rint(x_tmp * cos(parms->a_tilt) - y_tmp * sin(parms->a_tilt)); m->y = (int) rint(x_tmp * sin(parms->a_tilt) + y_tmp * cos(parms->a_tilt)); } double ProjectionTangential::comp_center_angle(double a1, double a2, double d1, double d2) { double sign1 = 1.0; double tan_acenter, tan_a1, tan_a2, a_center; tan_a1 = tan(a1); tan_a2 = tan(a2); tan_acenter = (((pow(((pow((1.0 + (tan_a1 * tan_a2)), 2.0) * ((d1 * d1) + (d2 * d2))) + (2.0 * d1 * d2 * ((2.0 * ((tan_a2 * tan_a1) - (tan_a2 * tan_a2))) - ((tan_a1 * tan_a1) * (2.0 + (tan_a2 * tan_a2))) - 1.0))), (1.0 / 2.0)) * sign1) + ((1.0 - (tan_a1 * tan_a2)) * (d1 - d2))) / (2.0 * ((d2 * tan_a2) - (d1 * tan_a1)))); a_center = atan(tan_acenter); if (a_center > 2.0 * pi_d) { a_center = a_center - 2.0 * pi_d; } else if (a_center < 0.0) { a_center = a_center + 2.0 * pi_d; } // atan(tan_dir_view) is not the only possible solution. // Choose the one which is close to m1->alph. if (fabs(a_center - a1) > pi_d/2.0) { a_center = a_center + pi_d; } return a_center; } double ProjectionTangential::comp_scale(double a1, double a2, double d1, double d2) { double sign1 = 1.0; double sc, tan_a1, tan_a2; tan_a1 = tan(a1); tan_a2 = tan(a2); sc = ((((1.0 + (tan_a1 * tan_a2)) * (d1 - d2)) - (sign1 * pow((((1.0 + pow((tan_a1 * tan_a2), 2.0)) * ((d1 * d1) + (d2 * d2))) + (2.0 * ((tan_a1 * tan_a2 * pow((d1 + d2), 2.0)) - (d1 * d2 * (((tan_a1 * tan_a1) * (2.0 + (tan_a2 * tan_a2))) + 1.0 + (2.0 * (tan_a2 * tan_a2))))))), (1.0 / 2.0)))) / (2.0 * (tan_a1 - tan_a2))); return sc; } static int get_matrix(double m[], double tan_nick_view, double tan_dir_view, double n_scale, double tan_dir_m1, double tan_nick_m1, double tan_dir_m2, double tan_nick_m2) { m[0] = pow(n_scale,2.0)*(1.0/pow((tan_nick_m1*tan_nick_view + 1.0),2.0)*(2.0*tan_nick_m1 - 2.0 * tan_nick_view) + 2.0*tan_nick_m1*pow((tan_nick_m1 - tan_nick_view), 2.0)/pow((tan_nick_m1*tan_nick_view + 1.0), 3.0)); m[1] = pow(n_scale, 2.0) *(1.0/pow((tan_dir_m1*tan_dir_view + 1.0), 2.0) * (2.0*tan_dir_m1 - 2.0*tan_dir_view) + 2.0*tan_dir_m1*pow((tan_dir_m1 - tan_dir_view),2.0) / pow((tan_dir_m1*tan_dir_view + 1.0), 3.0)); m[2] = -2.0*n_scale*(pow((tan_dir_m1 - tan_dir_view), 2.0)/pow((tan_dir_m1*tan_dir_view + 1.0), 2.0) + pow((tan_nick_m1 - tan_nick_view), 2.0)/pow((tan_nick_m1*tan_nick_view + 1.0), 2.0)); m[3] = pow(n_scale, 2.0)*(1.0/pow((tan_nick_m2*tan_nick_view + 1.0), 2.0)*(2.0*tan_nick_m2 - 2.0*tan_nick_view) + 2.0*tan_nick_m2*pow((tan_nick_m2 - tan_nick_view), 2.0)/pow((tan_nick_m2*tan_nick_view + 1.0), 3.0)); m[4] = pow(n_scale, 2.0)*(1.0/pow((tan_dir_m2*tan_dir_view + 1.0), 2.0)*(2.0*tan_dir_m2 - 2.0*tan_dir_view) + 2.0*tan_dir_m2*pow((tan_dir_m2 - tan_dir_view), 2.0)/pow((tan_dir_m2*tan_dir_view + 1.0), 3.0)); m[5] = -2.0*n_scale*(pow((tan_dir_m2 - tan_dir_view), 2.0)/pow((tan_dir_m2*tan_dir_view + 1.0), 2.0) + pow((tan_nick_m2 - tan_nick_view), 2.0)/pow((tan_nick_m2*tan_nick_view + 1.0), 2.0)); m[6] = 2.0*(n_scale*(tan_nick_m1 - tan_nick_view)/(tan_nick_m1*tan_nick_view + 1.0) - n_scale*(tan_nick_m2 - tan_nick_view)/(tan_nick_m2*tan_nick_view + 1.0))*(n_scale/(tan_nick_m1*tan_nick_view + 1.0) - n_scale/(tan_nick_m2*tan_nick_view + 1.0) + tan_nick_m1*n_scale*(tan_nick_m1 - tan_nick_view)/pow((tan_nick_m1*tan_nick_view + 1.0), 2.0) - tan_nick_m2*n_scale*(tan_nick_m2 - tan_nick_view)/pow((tan_nick_m2*tan_nick_view + 1.0),2.0)); m[7] = 2.0*(n_scale*(tan_dir_m1 - tan_dir_view)/(tan_dir_m1*tan_dir_view + 1.0) - n_scale*(tan_dir_m2 - tan_dir_view)/(tan_dir_m2*tan_dir_view + 1.0))*(n_scale/(tan_dir_m1*tan_dir_view + 1.0) - n_scale/(tan_dir_m2*tan_dir_view + 1.0) + tan_dir_m1*n_scale*(tan_dir_m1 - tan_dir_view)/pow((tan_dir_m1*tan_dir_view + 1.0), 2.0) - tan_dir_m2*n_scale*(tan_dir_m2 - tan_dir_view)/pow((tan_dir_m2*tan_dir_view + 1.0), 2.0)); m[8] = - 2.0*(n_scale*(tan_dir_m1 - tan_dir_view)/(tan_dir_m1*tan_dir_view + 1.0) - n_scale*(tan_dir_m2 - tan_dir_view)/(tan_dir_m2*tan_dir_view + 1.0))*((tan_dir_m1 - tan_dir_view)/(tan_dir_m1*tan_dir_view + 1.0) - (tan_dir_m2 - tan_dir_view)/(tan_dir_m2*tan_dir_view + 1.0)) - 2.0*(n_scale*(tan_nick_m1 - tan_nick_view)/(tan_nick_m1*tan_nick_view + 1.0) - n_scale*(tan_nick_m2 - tan_nick_view)/(tan_nick_m2*tan_nick_view + 1.0))*((tan_nick_m1 - tan_nick_view)/(tan_nick_m1*tan_nick_view + 1.0) - (tan_nick_m2 - tan_nick_view)/(tan_nick_m2*tan_nick_view + 1.0)); return 0; } static int opt_step(double *tan_nick_view, double *tan_dir_view, double *n_scale, double tan_dir_m1, double tan_nick_m1, double tan_dir_m2, double tan_nick_m2, double d_m1_2, double d_m2_2, double d_m1_m2_2) { double a[9]; double b[3]; double a_x0[3], f_x0 [3], x0[3]; int ret; get_matrix(a, *tan_nick_view, *tan_dir_view, *n_scale, tan_dir_m1, tan_nick_m1, tan_dir_m2, tan_nick_m2); f_x0[0] = d_m1_2 - (pow((*tan_nick_view-tan_nick_m1),2.0)/pow((tan_nick_m1**tan_nick_view+1), 2.0)+pow((*tan_dir_view-tan_dir_m1),2.0)/pow((tan_dir_m1**tan_dir_view+1),2.0))*pow(*n_scale, 2.0); f_x0[1] = d_m2_2 - (pow((*tan_nick_view-tan_nick_m2),2.0)/pow((tan_nick_m2**tan_nick_view+1),2.0)+pow((*tan_dir_view-tan_dir_m2),2.0)/pow((tan_dir_m2**tan_dir_view+1),2.0))*pow(*n_scale, 2.0); f_x0[2] = d_m1_m2_2 - (pow((- (((*tan_dir_view - tan_dir_m1) * *n_scale) / (tan_dir_m1 * *tan_dir_view + 1.0)) + (((*tan_dir_view - tan_dir_m2) * *n_scale) / (tan_dir_m2 * *tan_dir_view + 1))), 2.0) + pow((- (((*tan_nick_view - tan_nick_m1) * *n_scale) / (tan_nick_m1 * *tan_nick_view + 1)) + ((*tan_nick_view - tan_nick_m2) * *n_scale) / (tan_nick_m2 * *tan_nick_view + 1)), 2.0)); x0[0] = *tan_nick_view; x0[1] = *tan_dir_view; x0[2] = *n_scale; rmmult(a_x0, a, x0, 3, 3, 1); b[0] = a_x0[0] - f_x0[0]; b[1] = a_x0[1] - f_x0[1]; b[2] = a_x0[2] - f_x0[2]; ret = solv(a, b, 3); *tan_nick_view = b[0]; *tan_dir_view = b[1]; *n_scale = b[2]; return 0; } static double comp_tilt(double tan_nick_view, double tan_dir_view, double n_scale, double tan_nick_m, double tan_dir_m, double x, double y, double pi_d) { double y_tmp, x_tmp, sin_a_tilt1, sin_a_tilt2, sin_a_tilt, res; y_tmp = - (((tan_nick_view - tan_nick_m) * n_scale) / (tan_nick_m * tan_nick_view + 1)); x_tmp = - (((tan_dir_view - tan_dir_m) * n_scale) / (tan_dir_m * tan_dir_view + 1)); sin_a_tilt1 = - (y * - pow(x*x + y*y - y_tmp*y_tmp, 0.5) - x * y_tmp) / (x*x + y*y); sin_a_tilt2 = - (y * pow(x*x + y*y - y_tmp*y_tmp, 0.5) - x * y_tmp) / (x*x + y*y); sin_a_tilt = fabs(sin_a_tilt1) < fabs(sin_a_tilt2)?sin_a_tilt1:sin_a_tilt2; res = asin(sin_a_tilt); if (res > pi_d / 4.0) { res = res - pi_d / 2.0; } else if (res < -pi_d / 4.0) { res = res + pi_d / 2.0; } return res; }