summaryrefslogtreecommitdiff
path: root/src/ProjectionLSQ.cxx
blob: bcbb2060fefdc4623ab44d83af20854dcfc595c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
//
// Copyright 2006-2009 Johannes Hofmann <Johannes.Hofmann@gmx.de>
//
// This software may be used and distributed according to the terms
// of the GNU General Public License, incorporated herein by reference.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlin.h>

#include "ProjectionLSQ.H"

double ProjectionLSQ::pi = asin(1.0) * 2.0;

double
ProjectionLSQ::sec(double a) {
	return 1.0 / cos(a);
}

double
ProjectionLSQ::get_view_angle() {
	return 0.0;
}

int
ProjectionLSQ::comp_params(const Hills *h, ViewParams *parms) {
	const Hill *m1, *m2;
	double scale_tmp;
	int known_hills = h->get_num();
	ViewParams new_parms = *parms;

	if (known_hills < 1) {
		fprintf(stderr, "Please position at least 1 hill\n");
		return 1;
	}

	m1 = h->get(0);
	new_parms.a_center = m1->alph;
	new_parms.a_nick   = 0.0;

	if (known_hills > 1) {
		m2 = h->get(1);

		scale_tmp = comp_scale(m1->alph, m2->alph, m1->x, m2->x);

		if (isnan(scale_tmp) || scale_tmp < 50.0) {
			fprintf(stderr, "Could not determine initial scale value (%f)\n",
				scale_tmp);
			return 1;
		}

		new_parms.scale    = scale_tmp;
		new_parms.a_tilt   = 0.0;
	}

	if (known_hills > 3) {
		fprintf(stderr, "Performing calibration\n");
		new_parms.k0 = 0.0;
		new_parms.k1 = 0.0;
		new_parms.x0 = 0.0;
	}

	if (known_hills == 1) {
		lsq(h, &new_parms, 0);
	} else if (known_hills < 4) {
		lsq(h, &new_parms, 1);
	} else {
		lsq(h, &new_parms, 1);
		lsq(h, &new_parms, 2);
	}

	if (isnan(new_parms.scale) || new_parms.scale < 50.0) {
		fprintf(stderr, "Could not determine reasonable view parameters\n");
		return 1;
	}

	*parms = new_parms;

	return 0;
}

struct data {
	ProjectionLSQ *p;
	int level;
	const Hills *h;
	const ViewParams *old_params;
};

#define CALL(A) dat->p->A(parms.a_center, parms.a_nick, parms.a_tilt, parms.scale, parms.k0, parms.k1, parms.x0, m->alph, m->a_nick) 

static int
lsq_f (const gsl_vector * x, void *data, gsl_vector * f) {
	struct data *dat = (struct data *) data;
	ViewParams parms = *dat->old_params;

	parms.a_center = gsl_vector_get (x, 0);
	parms.a_nick = gsl_vector_get (x, 1);
	if (dat->level > 0) {
		parms.a_tilt = gsl_vector_get (x, 2);
		parms.scale = gsl_vector_get (x, 3);
	}
	if (dat->level > 1) {
		parms.k0  = gsl_vector_get (x, 4);
		parms.k1 = gsl_vector_get (x, 5);
		parms.x0 = gsl_vector_get (x, 6);
	}

	for (int i=0; i<dat->h->get_num(); i++) {
		Hill *m = dat->h->get(i);

		double mx = CALL(mac_x);
		double my = CALL(mac_y);

		gsl_vector_set (f, i*2, mx - m->x);
		gsl_vector_set (f, i*2+1, my - m->y);
	}

	return GSL_SUCCESS;
}

 
static int
lsq_df (const gsl_vector * x, void *data, gsl_matrix * J) {
	struct data *dat = (struct data *) data;
	ViewParams parms = *dat->old_params;

	parms.a_center = gsl_vector_get (x, 0);
	parms.a_nick = gsl_vector_get (x, 1);
	if (dat->level > 0) {
		parms.a_tilt = gsl_vector_get (x, 2);
		parms.scale = gsl_vector_get (x, 3);
	}
	if (dat->level > 1) {
		parms.k0 = gsl_vector_get (x, 4);
		parms.k1 = gsl_vector_get (x, 5);
		parms.x0 = gsl_vector_get (x, 6);
	}

	for (int i=0; i<dat->h->get_num(); i++) {
		Hill *m = dat->h->get(i);

		gsl_matrix_set (J, 2*i, 0, CALL(mac_x_dc_view));
		gsl_matrix_set (J, 2*i, 1, CALL(mac_x_dc_nick));
		if (dat->level > 0) {
			gsl_matrix_set (J, 2*i, 2, CALL(mac_x_dc_tilt));
			gsl_matrix_set (J, 2*i, 3, CALL(mac_x_dscale));
		}
		if (dat->level > 1) {
			gsl_matrix_set (J, 2*i, 4, CALL(mac_x_dk0));
			gsl_matrix_set (J, 2*i, 5, CALL(mac_x_dk1));
			gsl_matrix_set (J, 2*i, 6, CALL(mac_x_dx0));
		}

		gsl_matrix_set (J, 2*i+1, 0, CALL(mac_y_dc_view));
		gsl_matrix_set (J, 2*i+1, 1, CALL(mac_y_dc_nick));
		if (dat->level > 0) {
			gsl_matrix_set (J, 2*i+1, 2, CALL(mac_y_dc_tilt));
			gsl_matrix_set (J, 2*i+1, 3, CALL(mac_y_dscale));
		}
		if (dat->level > 1) {
			gsl_matrix_set (J, 2*i+1, 4, CALL(mac_y_dk0));
			gsl_matrix_set (J, 2*i+1, 5, CALL(mac_y_dk1));
			gsl_matrix_set (J, 2*i+1, 6, CALL(mac_y_dx0));
		}
	}

	return GSL_SUCCESS;
}

static int
lsq_fdf (const gsl_vector * x, void *data, gsl_vector * f, gsl_matrix * J) {
	lsq_f (x, data, f);
	lsq_df (x, data, J);
	 
	return GSL_SUCCESS;
}

int
ProjectionLSQ::lsq(const Hills *h, ViewParams *parms,
	int level) {

	const gsl_multifit_fdfsolver_type *T;
	gsl_multifit_fdfsolver *s;
	gsl_multifit_function_fdf f;
	struct data dat;
	double x_init[8];
	gsl_vector_view x;
	int status;
	int num_params;

	if (level == 0)
		num_params = 2;
	else if (level == 1)
		num_params = 4;
	else
		num_params = 7;

	dat.p = this;
	dat.level = level;
	dat.h = h;
	dat.old_params = parms;

	x_init[0] = parms->a_center;
	x_init[1] = parms->a_nick;
	x_init[2] = parms->a_tilt;
	x_init[3] = parms->scale;
	x_init[4] = parms->k0;
	x_init[5] = parms->k1;
	x_init[6] = parms->x0;

	x = gsl_vector_view_array (x_init, num_params);

	f.f = &lsq_f;
	f.df = &lsq_df;
	f.fdf = &lsq_fdf;
	f.n = h->get_num() * 2;
	f.p = num_params;
	f.params = &dat;

	T = gsl_multifit_fdfsolver_lmsder;
	s = gsl_multifit_fdfsolver_alloc (T, h->get_num() * 2, num_params);
	gsl_multifit_fdfsolver_set (s, &f, &x.vector);

	for (int i=0; i<100; i++) {
		status = gsl_multifit_fdfsolver_iterate (s);
		if (status) {
			break;
		}
	} 

	parms->a_center = gsl_vector_get(s->x, 0);
	parms->a_nick = gsl_vector_get(s->x, 1);

	if (level > 0) {
		parms->a_tilt = gsl_vector_get(s->x, 2);
		parms->scale = gsl_vector_get(s->x, 3);
	}
	if (level > 1) {
		parms->k0 = gsl_vector_get(s->x, 4);
		parms->k1 = gsl_vector_get(s->x, 5);
		parms->x0 = gsl_vector_get(s->x, 6);
	}

	gsl_multifit_fdfsolver_free (s);

	return 0;
}

void 
ProjectionLSQ::get_coordinates(double alph, double a_nick,
	const ViewParams *parms, double *x, double *y) {

	// Normalize alph - parms->a_center to [-pi/2, pi/2]
	if (alph - parms->a_center > pi)
		alph -= 2.0 * pi;
	else if (alph - parms->a_center < -pi)
		alph += 2.0 * pi;

	*x = mac_x(parms->a_center, parms->a_nick, parms->a_tilt, parms->scale,
		parms->k0, parms->k1, parms->x0, alph, a_nick); 
	*y = mac_y(parms->a_center, parms->a_nick, parms->a_tilt, parms->scale,
		parms->k0, parms->k1, parms->x0, alph, a_nick); 
}

double
ProjectionLSQ::comp_scale(double a1, double a2, double d1, double d2) {
	return (fabs(d1 - d2) / fabs(a1 - a2));
}

#define ARGS double c_view, double c_nick, double c_tilt, double scale, double k0, double k1, double x0, double m_view, double m_nick

double ProjectionLSQ::mac_x(ARGS) {return NAN;}
double ProjectionLSQ::mac_y(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dc_view(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dc_nick(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dc_tilt(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dscale(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dk0(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dk1(ARGS) {return NAN;}
double ProjectionLSQ::mac_x_dx0(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dc_view(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dc_nick(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dc_tilt(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dscale(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dk0(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dk1(ARGS) {return NAN;}
double ProjectionLSQ::mac_y_dx0(ARGS) {return NAN;}