summaryrefslogtreecommitdiff
path: root/src/ProjectionTangentialLSQ.cxx
blob: a05c990819d72af3e9aacc6e30e01f4bdeadb456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//
// Copyright 2006 Johannes Hofmann <Johannes.Hofmann@gmx.de>
//
// This software may be used and distributed according to the terms
// of the GNU General Public License, incorporated herein by reference.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "ProjectionTangentialLSQ.H"


static double sec(double a) {
	return 1.0 / cos(a);
}

#include "lsq_funcs.c"

static double k0 = 1.0, k1 = 0.0;

static double
comp_tilt(double tan_nick_view, double tan_dir_view, double n_scale,
	double tan_nick_m, double tan_dir_m,
	double x, double y, double pi_d);

int
ProjectionTangentialLSQ::comp_params(const Hill *m1, const Hill *m2, ViewParams *parms) {
	const Hill *tmp;
	double a_center_tmp, scale_tmp, a_nick_tmp;

	scale_tmp = comp_scale(m1->alph, m2->alph, m1->x, m2->x);
	if (isnan(scale_tmp) || scale_tmp < 100.0) {
		// try again with mountains swapped
		tmp = m1;
		m1 = m2;
		m2 = tmp;
		scale_tmp = comp_scale(m1->alph, m2->alph, m1->x, m2->x);
	}

	a_center_tmp = comp_center_angle(m1->alph, m2->alph, m1->x, m2->x);
	a_nick_tmp   = atan ((m1->y + tan(m1->a_nick) * parms->scale) / 
		(parms->scale - m1->y * tan(m1->a_nick)));

	if (isnan(a_center_tmp) || isnan(scale_tmp) ||
		scale_tmp < 100.0 || isnan(a_nick_tmp)) {
		return 1;
	} else {

		parms->a_center = a_center_tmp;
		parms->scale    = scale_tmp;
		parms->a_nick   = a_nick_tmp;

		optimize(m1, m2, parms);

		return 0;
	}
}

double 
ProjectionTangentialLSQ::angle_dist(double a1, double a2) {
	double ret;

	a1 = fmod(a1, 2.0 * pi_d); 
	if (a1 < 0.0) {
		a1 = a1 + 2.0 * pi_d;
	}
	a2 = fmod(a2, 2.0 * pi_d); 
	if (a2 < 0.0) {
		a2 = a2 + 2.0 * pi_d;
	}

	ret = fabs(a1 - a2);
	if (ret > pi_d) {
		ret = 2.0 * pi_d - ret;
	} 

	return ret;
}

int
ProjectionTangentialLSQ::optimize(const Hill *m1, const Hill *m2, ViewParams *parms) {
	int i;
	double tan_nick_view, tan_dir_view, n_scale;
	double tan_nick_m1, tan_dir_m1;
	double tan_nick_m2, tan_dir_m2;
	double d_m1_2, d_m2_2, d_m1_m2_2;

	d_m1_2 = pow(m1->x, 2.0) + pow(m1->y, 2.0);
	d_m2_2 = pow(m2->x, 2.0) + pow(m2->y, 2.0);
	d_m1_m2_2 = pow(m1->x - m2->x, 2.0) + pow(m1->y - m2->y, 2.0);

	tan_nick_view = tan(parms->a_nick);
	tan_dir_view = tan(parms->a_center);
	n_scale = parms->scale;
	tan_dir_m1 = tan(m1->alph);
	tan_nick_m1 = tan(m1->a_nick);
	tan_dir_m2 = tan(m2->alph);
	tan_nick_m2 = tan(m2->a_nick);
#if 0
	for (i=0; i<5; i++) {
		opt_step(&tan_nick_view, &tan_dir_view, &n_scale, 
			tan_dir_m1, tan_nick_m1, tan_dir_m2, tan_nick_m2,
			d_m1_2, d_m2_2, d_m1_m2_2);
	}
#endif

	if (isnan(tan_dir_view) || isnan(tan_nick_view) || isnan(n_scale)) {
		fprintf(stderr, "No solution found.\n");
		return 1;
	}

	parms->a_center = atan(tan_dir_view);
	parms->a_nick = atan(tan_nick_view);

	if (parms->a_center > 2.0 * pi_d) {
		parms->a_center = parms->a_center - 2.0 * pi_d;
	} else if (parms->a_center < 0.0) {
		parms->a_center = parms->a_center + 2.0 * pi_d;
	}

	// atan(tan_dir_view) is not the only possible solution.
	// Choose the one which is close to m1->alph.
	if (angle_dist(parms->a_center, m1->alph) > pi_d/2.0) {
		parms->a_center = parms->a_center + pi_d;
	}

	parms->scale = n_scale;

	// use the point with greater distance from center for tilt computation 
	if (d_m1_2 > d_m2_2) {
		parms->a_tilt = comp_tilt(tan_nick_view, tan_dir_view, n_scale, 
			tan_nick_m1, tan_dir_m1,
			(double) m1->x, (double) m1->y, pi_d);
	} else {
		parms->a_tilt = comp_tilt(tan_nick_view, tan_dir_view, n_scale, 
			tan_nick_m2, tan_dir_m2,
			(double) m2->x, (double) m2->y, pi_d);
	}

	return 0;
}

void 
ProjectionTangentialLSQ::get_coordinates(double a_view, double a_nick,
	const ViewParams *parms, double *x, double *y) {

	*x = mac_x(parms->a_center, parms->a_nick, parms->a_tilt, parms->scale, k0, k1, a_view, -a_nick); 
	*y = mac_y(parms->a_center, parms->a_nick, parms->a_tilt, parms->scale, k0, k1, a_view, -a_nick); 
}

double
ProjectionTangentialLSQ::comp_center_angle(double a1, double a2, double d1, double d2) {
	double sign1 = 1.0;
	double tan_acenter, tan_a1, tan_a2, a_center;

	tan_a1 = tan(a1);
	tan_a2 = tan(a2);

	tan_acenter = (((pow(((pow((1.0 + (tan_a1 * tan_a2)), 2.0) * ((d1 * d1) + (d2 * d2))) + (2.0 * d1 * d2 * ((2.0 * ((tan_a2 * tan_a1) - (tan_a2 * tan_a2))) - ((tan_a1 * tan_a1) * (2.0 + (tan_a2 * tan_a2))) - 1.0))), (1.0 / 2.0)) * sign1) + ((1.0 - (tan_a1 * tan_a2)) * (d1 - d2))) / (2.0 * ((d2 * tan_a2) - (d1 * tan_a1))));

	a_center = atan(tan_acenter);

	if (a_center > 2.0 * pi_d) {
		a_center = a_center - 2.0 * pi_d;
	} else if (a_center < 0.0) {
		a_center = a_center + 2.0 * pi_d;
	}

	// atan(tan_dir_view) is not the only possible solution.
	// Choose the one which is close to m1->alph.
	if (fabs(a_center - a1) > pi_d/2.0) {
		a_center = a_center + pi_d;
	}

	return a_center; 
}

double
ProjectionTangentialLSQ::comp_scale(double a1, double a2, double d1, double d2) {
	double sign1 = 1.0;
	double sc, tan_a1, tan_a2;

	tan_a1 = tan(a1);
	tan_a2 = tan(a2);

	sc = ((((1.0 + (tan_a1 * tan_a2)) * (d1 - d2)) - (sign1 * pow((((1.0 + pow((tan_a1 * tan_a2), 2.0)) * ((d1 * d1) + (d2 * d2))) + (2.0 * ((tan_a1 * tan_a2 * pow((d1 + d2), 2.0)) - (d1 * d2 * (((tan_a1 * tan_a1) * (2.0 + (tan_a2 * tan_a2))) + 1.0 + (2.0 * (tan_a2 * tan_a2))))))), (1.0 / 2.0)))) / (2.0 * (tan_a1 - tan_a2)));

	return sc;
}

static double
comp_tilt(double tan_nick_view, double tan_dir_view, double n_scale,
	double tan_nick_m, double tan_dir_m,
	double x, double y, double pi_d) {
	double y_tmp, x_tmp, sin_a_tilt1, sin_a_tilt2, sin_a_tilt, res;

	y_tmp = - (((tan_nick_view - tan_nick_m) * n_scale) / 
		(tan_nick_m * tan_nick_view + 1));
	x_tmp = - (((tan_dir_view - tan_dir_m) * n_scale) / 
		(tan_dir_m * tan_dir_view + 1));


	sin_a_tilt1 = - (y * - pow(x*x + y*y - y_tmp*y_tmp, 0.5) - x * y_tmp) /
		(x*x + y*y);

	sin_a_tilt2 = - (y * pow(x*x + y*y - y_tmp*y_tmp, 0.5) - x * y_tmp) / 
		(x*x + y*y);

	sin_a_tilt = fabs(sin_a_tilt1) < fabs(sin_a_tilt2)?sin_a_tilt1:sin_a_tilt2;

	res = asin(sin_a_tilt);

	if (res > pi_d / 4.0) {
		res = res - pi_d / 2.0;
	} else if (res < -pi_d / 4.0) {
		res = res + pi_d / 2.0;
	}

	return res;
}